organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xin-Lin Ren, Hao Peng and Hong-Wu He*

Key Laboratory of Pesticides & Chemical Biology of the Ministry, of Education, Central China Normal University,Wuhan 430079, People's Republic of China.

Correspondence e-mail: he1208@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study T = 300 KMean σ (C–C) = 0.005 Å R factor = 0.039 wR factor = 0.108 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(E)-Methyl 3-[3-(bromomethyl)phenyl]acrylate

In the title molecule, $C_{11}H_{11}BrO_2$, all bond lengths and angles show normal values. Weak intermolecular $C-H\cdots O$ hydrogen bonds link the molecules into centrosymmetric dimers and $C-H\cdots \pi$ interactions contribute to the stability of the crystal packing.

Comment

Acrylate and its derivatives are used in the sythesis of acrylic resins, which have important commercial applications in the paint industry (Seda & Vural, 2005). Here we report the crystal structure of the title compound, (I) (Fig. 1).

The bond lengths and angles in (I) show normal values (Allen *et al.*, 1987). The mean plane through O1/O2/C9–C11 and the benzene ring make a dihedral angle of 9.20 (2)°.

Weak intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2) and weak C-H·· π interactions (Table 1) contribute to the stability of the crystal packing (Janiak, 2000).

Experimental

(*E*)-Methyl 3-*m*-tolylacrylate, (II), was prepared according to a literature procedure (List *et al.*, 2006) in 85% yield. To a solution of compound (II) (5 mmol) in carbon tetrachloride (20 ml) was added *N*-bromosuccinimide (6 mmol) and dibenzoyl peroxide (1.2 mmol).

Figure 1

 $\ensuremath{\mathbb{C}}$ 2007 International Union of Crystallography All rights reserved

Received 20 March 2007 Accepted 23 March 2007 The mixture was stirred at 350K for 8 h, then washed with water and 4% NaOH solution in water. The solvent was removed under reduced pressure and the residue was purified by chromatography (silica gel with 3% ethyl acetate in petroleum ether). Recrystallization from hexane and dichloromethane (5:1) over a period of one week gave colourless crystals of (I).

Crystal data

 $\begin{array}{l} C_{11}H_{11}BrO_2 \\ M_r = 255.11 \\ Triclinic, P\overline{1} \\ a = 6.1578 \ (5) \ \mathring{A} \\ b = 7.8390 \ (7) \ \mathring{A} \\ c = 12.0604 \ (10) \ \mathring{A} \\ \alpha = 77.580 \ (1)^{\circ} \\ \beta = 88.816 \ (1)^{\circ} \end{array}$

 $\gamma = 71.594 (1)^{\circ}$ $V = 538.76 (8) Å^{3}$ Z = 2Mo K α radiation $\mu = 3.79 \text{ mm}^{-1}$ T = 300 (2) K $0.30 \times 0.30 \times 0.30 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	2097 independent reflections
diffractometer	1698 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.036$
4156 measured reflections	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.108$ S = 1.072097 reflections 129 parameters H-atom parameters constrained $\begin{array}{l} \Delta \rho_{max} = 0.54 \ e \ \ A^{-3} \\ \Delta \rho_{min} = -0.42 \ e \ \ A^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C2 - H2 \cdots O1^{i} \\ C11 - H11A \cdots Cg^{ii} \end{array}$	0.93	2.59	3.369 (4)	141
	0.96	2.82	3.6048	140

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 2, -z. Cg is the centroid of the benzene ring.

All H atoms were positioned geometrically (C-H 0.93–0.97 Å) and refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

A portion of the crystal packing, showing the $C-H\cdots O$ hydrogenbonded (dashed lines) centrosymmetric dimers.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: Bruker *SHELXTL* (Bruker, 1997); software used to prepare material for publication: Bruker *SHELXTL*.

We gratefully acknowledge the financial support of this work by the National Basic Research Program of China (grant No. 2003CB114400) and the National Natural Science Foundation of China (grant No. 20372023).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SMART (Version 5.059) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Seda, T. R. & Vural, E. (2005). Progr. Org. Coat., 52, 144-150.
- List, B., Doehring, A., Fonseca, M. H., Job, A. & Torres, R. R. (2006). *Tetrahedron*, **62**, 476–482.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.